Graph Embeddings for Non-IID Data Feature Representation Learning

QIANG SUN

University of Western Australia

Supervised by

Assoc. Prof. Wei Liu, Dr Du Huynh, Assoc. Prof. Mark Reynolds Department of Computer Science and Software Engineering

November 22, 2024

Motivation and Problem Definition

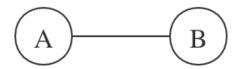
Motivation: How we handle data now?

Site name	Year	Description	Asset number	Lat	Lng	ADT	AWDT	AWEDT	85% speed	Light vehicles(%)	Medium vehicles(%)	Heavy vehicles(%)	Cycle(%)	Motorcycle(%)	Unclassifiable(%)
05-013	2021	Cobb Street - E of Calais Road <50> (No 77)		-31.907133	115.769148	875.00	899.00	797.00	54.11	90.66	7.56	0.11	0.91	0.69	0.07
05-062	2021	Westview Street - N of Scarborough Beach Road <50> (No 151)		-31.893093	115.774083	857.00	879.00	790.00	36.68	93.76	3.57	0.07	0.94	0.57	1.09
05-014	2021	Cobb Street - E of Cornelian Street <50> (No 122)		-31.907387	115.774543	3617.00	3838.00	2954.00	54.50	94.53	4.00	0.12	0.70	0.62	0.03
07-030	2021	Maree Street - W of Bissett Way <50> (No 26)		-31.851122	115.817148	223.00	234.00	203.00	54.40	94.95	3.51	0.23	0.84	0.47	0.00
08-027	2021	Swiftlet Way - N of Willowbank Entrance <50> (No 4)		-31.866735	115.791622	639.00	648.00	604.00	38.02	92.95	5.42	0.12	0.60	0.91	0.00
06-026	2021	Monyash Road - S of Wessex Street <50> (No 28)		-31.853747	115.790568	278.00	266.00	322.00	49.39	90.82	7.17	0.35	0.99	0.62	0.05
05-054	2021	Stanley Street - N of Ventnor Street <50> (No 100B)		-31.902667	115.762312	431.00	437.00	416.00	47.02	95.20	3.28	0.00	0.32	1.08	0.12
06-006	2021	Camelot Street - E of Duffy Road <50> (No 7)		-31.853608	115.794553	1119.00	1162.00	980.00	45.68	93.24	5.25	0.70	0.33	0.45	0.03
05-001	2021	Almadine Drive - E of Marmion Avenue <50> (No 52)		-31,853632	115.768778	2011.00	2387.00	873.00	54.61	94.29	4.33	0.31	0.48	0.51	0.08
05-028	2021	Duke Street - N of Brighton Road <50> (No 193)		-31.896198	115.771465	7359.00	7728.00	6266.00	58.00	92.68	6.55	0.26	0.07	0.42	0.03
05-022	2021	Dover Road - N of Ventnor Street <50> (No 45)		-31.902717	115.765752	407.00	416.00	367.00	53.71	94.05	3.82	0.06	0.69	1.38	0.00
05-050	2021	Sackville Terrace - W of Abbett Street <50> (No 77 Abbett)		-31.887698	115.768812	6965.00	6801.00	7455.00	47.81	92.40	5.90	0.21	0.53	0.87	0.10
06-043	2021	Whittington Avenue - W of Godecke Rise <50> (No 12)		-31.847642	115.769412	1169.00	1174.00	1151.00	55.58	95.72	2.93	0.16	0.42	0.70	0.07
08-003	2021	Balcatta Road West - E of Careniup Avenue <50> (70m East)		-31.85932	115.796223	564.00	582.00	504.00	57.71	90.62	7.52	0.51	1.01	0.29	0.04
06-042	2021	Whittington Avenue - E of Bradbourne Drive <50> (No 54)		-31.848895	115.765343	1015.00	1020.00	999.00	56.30	94.49	3.89	0.25	0.46	0.88	0.02
18-006	2021	Dolomite Court - E of Silkwood Turn <50> (No 29)		-31.921695	115.79033	858.00	969.00	493.00	51.70	94.67	3.71	0.06	1.20	0.29	0.06
06-014	2021	Ediaston Road - E of Kersey Way E <50> (No 33)		-31.846663	115.775163	698.00	705.00	678.00	58.90	94.66	3.85	0.13	0.68	0.66	0.04
06-016	2021	Everingham Street - S of Osmaston Road <50> (No 76)		-31.851858	115.777517	2312.00	2838.00	727.00	50.51	94.91	3.90	0.14	0.26	0.41	0.38
27-028	2021	Fourth Avenue - W of John Street <50> (No 70)		-31,926933	115.880983	1314.00	1423.00	1145.00	54.22	94.52	3.34	0.08	1.28	0.74	0.04
28-025	2021	Harcourt Street - E of Beaufort Street <50> (No 13)		-31.92012	115.889367	211.00	180.00	214.00	46.30	90.56	5.41	0.32	2.42	1.13	0.16
28-078	2021	Dundas Road - E of Arthur Street <50> (No 11)		-31.919552	115.886608	1505.00	1526.00	1450.00	52.49	94.54	2.98	0.07	1.62	0.54	0.25
28-050	2021	Wood Street - W of Beaufort Street <50> (No 14)		-31.916963	115.889622	2095.00	2195.00	1824.00	49.00	94.90	3.03	0.17	1.14	0.62	0.13
06-013	2021	Ediaston Road - W of Alvaston Drive <50> (No 60)		-31.846517	115.779003	1045.00	1058.00	1009.00	52.42	94.78	4.54	0.13	0.07	0.45	0.02
18-046	2021	Campus Way - W of Pearson Street <50> (No 6)		-31.925042	115.793828	318.00	326.00	283.00	44.21	94.63	3.87	0.15	0.38	0.70	0.27
28-074	2021	Beaufort Street - S of Eighth Avenue <50> (HN 851 (Hair Studio))		-31.922678	115.8839	22457.00	22692.00	21826.00	50.90	93.37	5.26	0.20	0.45	0.68	0.05
28-080	2021	Normanby Road - W of Beaufort Street <50> (No 6)		-31.919038	115.887795	265.00	279.00	227.00	45.22	92.41	3.54	0.06	3.07	0.81	0.12
07-027	2021	Hornet Street - S of Eglinton Crescent <50> (No 4)		-31.853987	115.809802	619.00	630.00	577.00	44.89	92.55	6.19	0.21	0.35	0.56	0.14
06-031	2021	Osmaston Road - S of Ediaston Road <50> (No 47)		-31.849087	115.772533	1848.00	2233.00	690.00	53.10	94.26	4.01	0.15	0.97	0.50	0.11
05-006	2021	Brighton Road - E of Hinderwell Street <50> (No 101)		-31.898005	115.767125	8918.00	8891.00	9047.00	54.22	94.77	4.03	0.08	0.30	0.77	0.05
05-009	2021	Burniston Street - N of Scarborough Beach Road <50> (No 145)		-31,892408	115.770427	877.00	928.00	719.00	51.01	94.28	3.98	0.36	0.41	0.89	0.09
07-019	2021	Eglinton Crescent - W of Erindale Road <50> (No 147)		-31.853707	115.8118	2432.00	2820.00	1262.00	59.69	92.68	6.22	0.25	0.27	0.53	0.06
30-073	2021	The Strand - E of McLean Street <50> (No 332)		-31,896713	115.878838	2482.00	2533.00	2320.00	59.51	94.36	4.58	0.23	0.49	0.25	80.0
18-043	2021	Mountainbell Road - N of Cromarty Road <50> (20m North)		-31.927283	115.793548	452.00	462.00	398.00	34.60	82.49	11.26	0.03	0.97	0.57	4.69
18-044	2021	Parrotbush Road - N of Cromarty Road <50> (No 4)		-31.927255	115.792547	839.00	878.00	699.00	40.21	84.73	6.67	0.10	0.85	0.38	7.27
28-075	2021	Nelson Street - N of York Street <50> (No 20)		-31,918648	115.892252	905.00	932.00	832.00	53.10	94.32	3.63	0.02	1.38	0.63	0.02
28-077	2021	Central Avenue - W of Beaufort Street <50> (No 145)		-31,924177	115.880942	13448.00	14180.00	11595.00	60.52	95.61	3.33	0.17	0.25	0.60	0.04

Motivation: Visualization of the structural information

It looks cool, but:

• How to make machines represent, interpret and leverage structured information effectively?

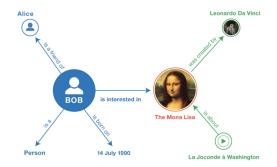

- How to encode structural information of a network into a machine learning problem?
- Whether the structural enhanced feature space improve classification performance?
- Knowledge graph embedding compares with homogenous network embedding in feature encoding?
- We use a traffic network where spatial information is naturally present.

Methodology: The I.I.D (Independent Identical

Distribution) Assumption

Models	Rows/Observations	Columns/Features		
Logistic Regression	Assume independent	Assume independent		
Naïve Bayes	Assume independent	Assume independent		
SVM	Assume independent	Assume independent		
DT/RF	Assume independent	Assume independent		
kNN	No assumption	No assumption		

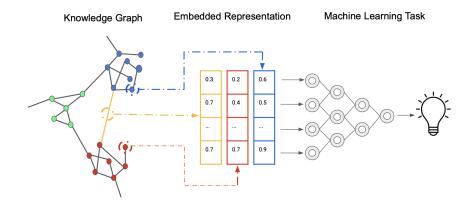
Methodology: Graph

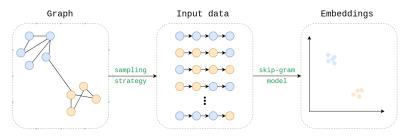


A simple graph

- Nodes are of the same type.
- Edges can be directed or weighted.

https://web.stanford.edu/class/cs520/2020/notes/What_is_a_Knowledge_Graph.html

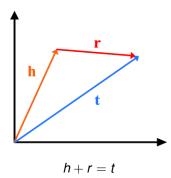

Methodology: Knowledge Graph (KG)


A simple knowledge graph

- Nodes and edges all have types.
- Ontology required.

Methodology: Graph and Knowledge Graph Embedding Workflow

Methodology: Graph Embedding with Node2vec

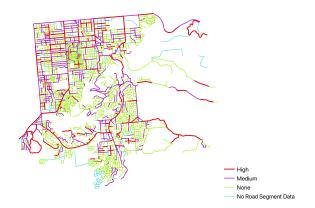

node2vec embedding process

- Biased random walk, which explores neighborhoods in BFS as well as DFS fashion, generate sequences as input.
- Capture homophily and structural equivalence.

https://snap.stanford.edu/node2vec/

Methodology: Knowledge Graph Embedding with

https://en.wikipedia.org/wiki/Knowledge_graph_embedding Bordes et al, Advances in Neural Information Processing Systems, 2013


Methodology: How we handle spatial datasets?

- Graph and Knowledge Graph Construction: A road network graph and a traffic knowledge graph.
- Representation learning: Compute the embeddings by node2vec, TransE respectively.
- Machine Learning Tasks: Use embeddings as input, apply SVM, kNN and RF.

The road network is composed of 2287 road segments, for each road segment, we selected the following 8 features:

- a unique asset id to identify road segments
- speed limit, eg: 40km/h, 50km/h, 60km/h
- difference between speed limit and 85th %ile speed
- average daily AM peak hour traffic volume
- average daily PM peak hour traffic volume
- total number of rear end hit accidents since 2016
- total *number of crashes* since 2016
- total number of casualties since 2016
- 1 for asset management, 2 for speed, 2 for volume, 3 for risk

City of Mitcham Road Segments Raw Risk Labels

Graph and Knowledge Graph Construction

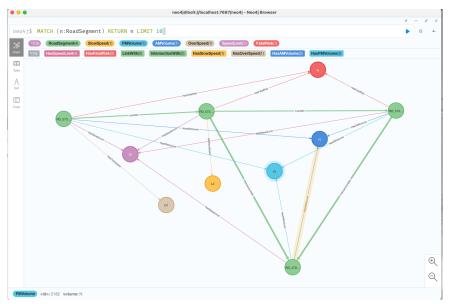
- Graph and Knowledge Graph Construction: A road network graph and a traffic knowledge graph.
- Representation learning: Compute the embeddings by node2vec, TransE respectively.
- Machine Learning Tasks: Use embeddings as input, apply SVM, kNN and RF.

With the help of Neo4j¹, we build a simple road network graph, which contains the following:

Name	Туре	Comments	Numbers
RoadSegment	Node	Use asset id to distinguish nodes	2287
Link	Edge	Link connected RoadSegment	3772

To build a knowledge graph upon this:

- Keep the road segment nodes.
- Discrete attributes to obtain nodes for *speed/volume/risk*.


¹https://neo4j.com/

Graph and Knowledge Graph Construction (cont.)

Same, with Neo4j, the summary of traffic knowledge graph we built as following:

Name	Туре	Explain	Numbers
RoadSegment	Node	Use ASSET_ID to distinguish nodes	2287
FatalRisk	Node	Enumerate, H/M/N, stands for risk level	3
RearEndHit	Node	RearEndHit occurred	1
OverSpeed	Node	Enumerate, $O_1/O_2/O_3/O_4/O_5$	5
SlowSpeed	Node	Enumerate, $L_1/L_2/L_3/L_4/L_5$	5
SpeedLimit	Node	Enumerate, 15/25/40/50/60/70 (km/h)	6
AMVolume	Node	Enumerate, H/M/L/N	4
PMVolume	Node	Enumerate, H/M/L/N	4
LinkWith	Edge	Link connected RoadSegment	1086
IntersectionWith	Edge	The link between roadsegments is intersection	2686
HasFatalRisk	Edge	Link RoadSegment with FatalRisk nodes	2287
HasRearEndHit	Edge	Link RearEndHit with RoadSegment	117
HasOverSpeed	Edge	Link OverSpeed nodes with RoadSegment	423
HasSlowSpeed	Edge	Link SlowSpeed nodes with RoadSegment	548
HasSpeedLimit	Edge	Link SpeedLimit nodes with RoadSegment	2287
HasAMVolume	Edge	Link AMVolume nodes with RoadSegment	974
HasPMVolume	Edge	Link PMVolume nodes with RoadSegment	974

Graph and Knowledge Graph Construction (cont.)

- Graph and Knowledge Graph Construction: A road network graph and a traffic knowledge graph.
- Representation learning: Compute the embeddings by node2vec, TransE respectively.
- Machine Learning Tasks: Use embeddings as input, apply SVM, kNN and RF.

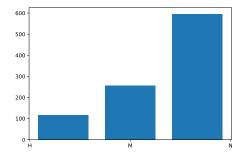
Using *NetworkX*², *node2vec*³, *pykg2vec*⁴, we managed to train and compute the embeddings for both the traffic knowledge graph and the road network graph.

- a 50-dimensions vector for each road segment in the road network graph via node2vec.
- a 58-dimensions vector for each road segment in the traffic KG via TransE.

²https://networkx.org/ ³https://snap.stanford.edu/node2vec/ ⁴https://pykg2vec.readthedocs.io/

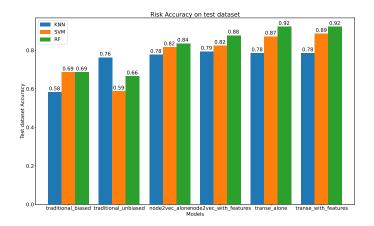
Machine Learning Tasks (cont.)

- Graph and Knowledge Graph Construction: A road network graph and a traffic knowledge graph.
- Representation learning: Compute the embeddings by node2vec, TransE respectively.
- Machine Learning Tasks: Use embeddings as input, apply SVM, kNN and RF.

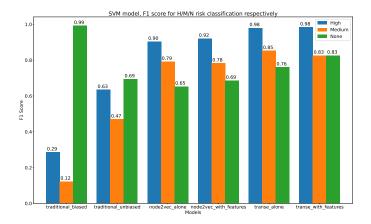

Machine Learning Tasks (cont.)

- For our classification task, our target variable is the *risk level*.
- We used SVM, kNN and RF to train the classification models.
- For traditional models, we have 5 input features: *speed limit, difference between speed limit and 85th %ile, AM peak volume, PM peak volume, rear end hit number.*
- Only 969 road segments without any missing features, having all the 5 features.
- 1316 have no speed data, and 1313 have no traffic volume data, due to traffic survey limitation.

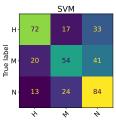
We want to see the performance differences when we feed different input sets into models.


Input	Reference ID
five features	traditional_biased/unbiased
50-dim vectors (node2vec)	node2vec_alone
50-dim vectors (node2vec) + five features	node2vec_with_features
58-dim vectors (TransE)	transe_alone
58-dim vectors (TransE) + five features	transe_with_features

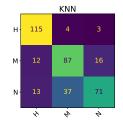
Machine Learning Tasks: Oversampling for highly imbalanced data

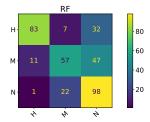

Imbalanced risk level distribution

Results: Risk classification

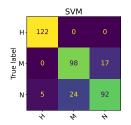

Risk classification accuracy for train and test datasets, per input set, per model

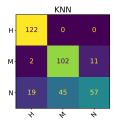
Results: Risk classification

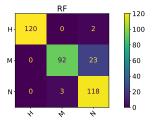



Risk classification f1 score for each input set, per risk level

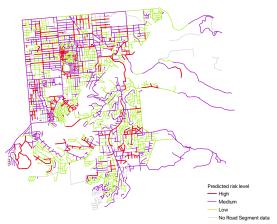
Results: Risk classification confusion matrix

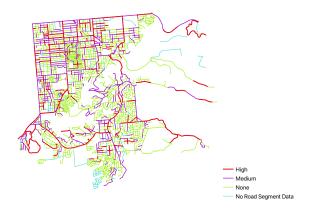



Traditional models with over samping data

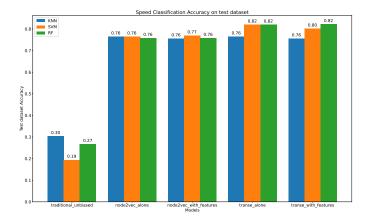


TransE embeddings alone

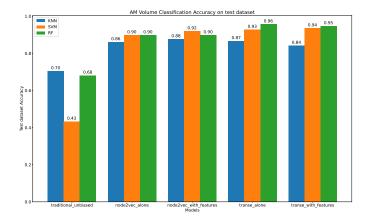



Results: Risk classification

Risk of Road Segments in City of Mitcham Prediction (Node2Vec + KNN)



Map visualisation of road segments risk levels predicted by node2vec + kNN


City of Mitcham Road Segments Raw Risk Labels

Results: Speed classification

Results: AM Volume classification

- Speed, volume and accidents are seem to be mainly determined by the road network structure.
- Road networks are not the whole story, with help of traffic knowledge graphs, classification accuracy can further improve.
- node2vec_alone and transe_alone models can handle missing data

- Represent information with graphs or knowledge graphs, can encode structural information. Furthermore, it can handle missing data problem.
- Effective use of the spatial information in the dataset can effectively improve the accuracy of the classification tasks.
- Knowledge graph embeddings can preseve more information, so perform slightly better than homogenous network embeddings.
- Graph and Knowledge Graph embeddings perform well for Non-I.I.D Data feature extraction.

Traffic related

- Apply on additional traffic related datasets to validate findings.
- Build more complex traffic knowledge graphs, evaluate the performance.
- Spatial datasets related
 - Build more diverse spatial knowledge graphs.
 - Apply knowledge graph embedding models other than TransE.
- Other
 - Make use of the edge embeddings.
 - Explore how to represent and interpretate temporal information.

THANK YOU Q & A