Skip to content

Allen temporal simulator

AllenTemporalSimulator

Source code in TimelineKGQA/simulation/allen_temporal_simulator.py
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
class AllenTemporalSimulator:
    def __init__(self, n, m, max_time=10, mode="timeranges"):
        self.n = n  # number of random points to generate
        self.m = m  # number of points to generate around each random point
        self.max_time = max_time  # maximum time value for all axes
        self.mode = mode  # mode to generate points, either "timeranges" or "timepoint"
        self.color_shape_map = {
            "before": ("#FF0000", "circle"),  # bright red, circle
            "after": ("#FF4500", "square"),  # orange-red, square
            "meets": ("#1E90FF", "circle-open"),  # dodger blue, circle-open
            "met_by": ("#4169E1", "square-open"),  # royal blue, square-open
            "overlaps": ("#32CD32", "cross"),  # lime green, cross
            "overlapped_by": ("#228B22", "x"),  # forest green, x
            "starts": ("#800080", "diamond"),  # purple, diamond
            "started_by": ("#9932CC", "diamond-open"),  # dark orchid, diamond-open
            "during": ("#FFA500", "circle"),  # orange, circle
            "contains": ("#FF8C00", "square"),  # dark orange, square
            "finishes": ("#FFFF00", "circle-open"),  # yellow, circle-open
            "finished_by": ("#FFD700", "square-open"),  # gold, square-open
            "equals": ("#00FFFF", "diamond"),  # cyan, diamond
        }
        self.output_dir = DATA_DIR / "simulations"
        self.output_dir.mkdir(exist_ok=True, parents=True)

    def generate_surface(self):
        """
        This is the 3D surface that represents all information temporal information
        """
        x = np.linspace(0, self.max_time, 100)
        y = np.linspace(0, self.max_time, 100)
        X, Y = np.meshgrid(x, y)
        Z = np.maximum(Y - X, 0)  # Z starts from 0 at the origin and increases
        # remove all points where X > Y
        Z[X > Y] = np.nan
        return X, Y, Z

    def generate_nearby_time_ranges(self, point):
        start, end = point
        nearby_points = []
        for _ in range(self.m):
            # random select a relationship to generate a nearby point
            temporal_relation = np.random.choice(list(self.color_shape_map.keys()))
            if temporal_relation == "meets":
                new_start = end
                new_end = np.random.uniform(new_start + 0.1, self.max_time)
            elif temporal_relation == "met_by":
                new_end = start
                new_start = np.random.uniform(0, new_end - 0.1)
            elif temporal_relation == "starts":
                new_start = start
                new_end = np.random.uniform(start + 0.1, self.max_time)
            elif temporal_relation == "started_by":
                new_end = end
                new_start = np.random.uniform(0, new_end - 0.1)
            elif temporal_relation == "finishes":
                new_end = end
                new_start = np.random.uniform(0, new_end - 0.1)
            elif temporal_relation == "finished_by":
                new_start = start
                new_end = np.random.uniform(start + 0.1, self.max_time)
            elif temporal_relation == "equals":
                new_start = start
                new_end = end
            else:
                new_start = np.random.uniform(
                    max(0, start - 100), min(self.max_time, start + 100)
                )
                new_end = np.random.uniform(
                    max(new_start + 0.1, end - 100), min(self.max_time, end + 100)
                )
            nearby_points.append((new_start, new_end))
        return nearby_points

    def generate_nearby_timepoints(self, point):
        start, end = point
        nearby_points = []
        for _ in range(self.m):
            # random select a relationship to generate a nearby point
            temporal_relation = np.random.choice(["before", "equals", "after"])
            if temporal_relation == "before":
                new_start = np.random.uniform(0, start)
                new_end = new_start
            elif temporal_relation == "after":
                new_start = np.random.uniform(end, self.max_time)
                new_end = new_start
            elif temporal_relation == "equals":
                new_start = start
                new_end = end
            nearby_points.append((new_start, new_end))
        return nearby_points

    def generate_nearby_timepoints_for_timerange(self, time_range):
        start, end = time_range
        nearby_points = []
        for _ in range(self.m):
            # random select a relationship to generate a nearby point
            temporal_relation = np.random.choice(
                ["before", "finishes", "contains", "started_by", "after"]
            )
            if temporal_relation == "before":
                new_start = np.random.uniform(0, start)
                new_end = new_start
            elif temporal_relation == "finishes":
                new_start = start
                new_end = new_start
            elif temporal_relation == "contains":
                new_start = np.random.uniform(start, end)
                new_end = new_start
            elif temporal_relation == "started_by":
                new_start = end
                new_end = new_start
            elif temporal_relation == "after":
                new_start = np.random.uniform(end, self.max_time)
                new_end = new_start
            else:
                return
            nearby_points.append((new_start, new_end))
        return nearby_points

    def determine_relation(self, interval1, interval2):
        """
        Determine the relationship between two temporal intervals

        """
        start1, end1 = interval1
        start2, end2 = interval2

        if end1 < start2:
            return "before"  # interval1 is before interval2
        elif start1 > end2:
            return "after"  # interval1 is after interval2
        elif end1 == start2:  # interval1 meets interval2
            return "meets"
        elif start1 == end2:  # interval1 is met by interval2
            return "met_by"
        elif start1 < start2 < end1 < end2:  # interval1 overlaps interval2
            return "overlaps"
        elif start2 < start1 < end2 < end1:  # interval1 is overlapped by interval2
            return "overlapped_by"
        elif start1 == start2 and end1 < end2:  # interval1 starts interval2
            return "starts"
        elif start1 == start2 and end1 > end2:  # interval1 is started by interval2
            return "started_by"
        elif start2 < start1 < end1 < end2:  # interval1 is during interval2
            return "during"
        elif start1 < start2 < end2 < end1:  # interval1 contains interval2
            return "contains"
        elif start1 < start2 < end2 == end1:  # interval1 finishes interval2
            return "finishes"
        elif start2 < start1 < end1 == end2:  # interval1 is finished by interval2
            return "finished_by"
        elif start1 == start2 and end1 == end2:  # interval1 equals interval2
            return "equals"

    def determine_relation_timepoint(self, point1, point2):
        start1, end1 = point1
        start2, end2 = point2
        if end1 < start2:
            return "before"
        elif start1 > end2:
            return "after"
        elif start1 == start2 and end1 == end2:
            return "equals"

    def determine_relation_timepointrange(self, point_1, time_range_2):
        """
        Point 1 will be a time point, and point 2 will be a time range
        So there will be 5 relationships: before, starts, during, finishes, after

        """
        start1, end1 = point_1  # point1 is a time point, so start1 = end1
        start2, end2 = time_range_2

        if start1 < start2:
            return "before"  # point1 is before range2
        elif start1 == start2:
            return "starts"  # point1 starts range2
        elif start1 > start2 and start1 < end2:
            return "during"
        elif start1 == end2:
            return "finishes"
        elif start1 > start2:
            return "after"

    def determine_relation_timerangepoint(self, point1, point2):
        """
        Point 1 will be a time range, and point 2 will be a time point
        So there will be 5 relationships: before, meets, contain, finished_by, after
        """

        start1, end1 = point1
        start2, end2 = point2  # point2 is a time point, so end2 = start2

        if end1 < start2:
            return "before"  # range1 is before point2
        elif end1 == start2:
            return "finished_by"  # range 1 meets point2
        elif start1 < start2 and end1 > start2:
            return "contains"  # range 1 contains point2
        elif start1 == start2:
            return "met_by"  # range 1 finished_by point2
        elif start1 > start2:
            return "after"  # range 1 is after point2

    def visualize(self, center_point=None):
        """
        First generate the 3D surface for the visualization
        """
        X, Y, Z = self.generate_surface()

        fig = go.Figure()

        if self.mode == "surface":
            # show the surface track
            fig.add_trace(
                go.Surface(
                    x=X,
                    y=Y,
                    z=Z,
                    # give it the grey color
                    colorscale=[[0, "rgb(220,220,220)"], [1, "rgb(220,220,220)"]],
                    showscale=False,
                    opacity=0.5,
                    showlegend=False,
                )
            )

        traces = {
            relation: go.Scatter3d(
                x=[],
                y=[],
                z=[],
                mode="markers",
                marker=dict(size=5, color=color, symbol=shape),
                name=relation,
            )
            for relation, (color, shape) in self.color_shape_map.items()
        }

        """
        Here is for relationship between temporal intervals
        """
        if self.mode == "timeranges":
            # define a center point
            if not center_point:
                center_point = (25, 75)
            start, end = center_point
            fig.add_trace(
                go.Scatter3d(
                    x=[start],
                    y=[end],
                    z=[end - start],
                    mode="markers",
                    marker=dict(size=20, color="black", symbol="cross"),
                    showlegend=False,
                )
            )

            nearby_points = self.generate_nearby_time_ranges(center_point)
            for nearby_point in nearby_points:
                n_start, n_end = nearby_point
                relation = self.determine_relation(center_point, nearby_point)
                traces[relation].x = traces[relation].x + (n_start,)
                traces[relation].y = traces[relation].y + (n_end,)
                traces[relation].z = traces[relation].z + (n_end - n_start,)

            # Add all traces to the figure
            for trace in traces.values():
                fig.add_trace(trace)

        """
        Add a time point to time point relationship

        Which means the z is 0, x = y, and only three relationships: before, equals, after
        """

        if self.mode == "timepoints":

            # define a center point for timepoint
            if not center_point:
                center_point = (50, 50)
            else:
                assert (
                    len(center_point) == 2
                ), "Center point must be a tuple of 2 values"
                assert (
                    center_point[0] == center_point[1]
                ), "Center point must be a time point"
            start, end = center_point
            fig.add_trace(
                go.Scatter3d(
                    x=[start],
                    y=[end],
                    z=[0],
                    mode="markers",
                    marker=dict(size=20, color="black", symbol="cross"),
                    showlegend=False,
                )
            )

            nearby_points = self.generate_nearby_timepoints(center_point)

            for nearby_point in nearby_points:
                n_start, n_end = nearby_point
                relation = self.determine_relation_timepoint(center_point, nearby_point)
                traces[relation].x = traces[relation].x + (n_start,)
                traces[relation].y = traces[relation].y + (n_end,)
                traces[relation].z = traces[relation].z + (0,)
            # Add all traces to the figure
            for trace in traces.values():
                fig.add_trace(trace)

        if self.mode == "timepointrange":
            if not center_point:
                center_point = (50, 50)
            else:
                assert (
                    len(center_point) == 2
                ), "Center point must be a tuple of 2 values"
                assert (
                    center_point[0] != center_point[1]
                ), "Center point must be a time range"
            start, end = center_point
            fig.add_trace(
                go.Scatter3d(
                    x=[start],
                    y=[end],
                    z=[0],
                    mode="markers",
                    marker=dict(size=20, color="black", symbol="cross"),
                    showlegend=False,
                )
            )

            nearby_points = self.generate_nearby_time_ranges(center_point)
            for nearby_point in nearby_points:
                n_start, n_end = nearby_point
                relation = self.determine_relation_timepointrange(
                    center_point, nearby_point
                )
                if relation is None:
                    continue
                traces[relation].x = traces[relation].x + (n_start,)
                traces[relation].y = traces[relation].y + (n_end,)
                traces[relation].z = traces[relation].z + (n_end - n_start,)
            # Add all traces to the figure
            for trace in traces.values():
                fig.add_trace(trace)

        if self.mode == "timerangepoint":
            if not center_point:
                center_point = (25, 75)
            else:
                assert (
                    len(center_point) == 2
                ), "Center point must be a tuple of 2 values"
                assert (
                    center_point[0] != center_point[1]
                ), "Center point must be a time range"
            start, end = center_point
            fig.add_trace(
                go.Scatter3d(
                    x=[start],
                    y=[end],
                    z=[end - start],
                    mode="markers",
                    marker=dict(size=20, color="black", symbol="cross"),
                    showlegend=False,
                )
            )

            nearby_points = self.generate_nearby_timepoints_for_timerange(center_point)
            for nearby_point in nearby_points:
                n_start, n_end = nearby_point
                relation = self.determine_relation_timerangepoint(
                    center_point, nearby_point
                )
                if relation is None:
                    continue
                traces[relation].x = traces[relation].x + (n_start,)
                traces[relation].y = traces[relation].y + (n_end,)
                traces[relation].z = traces[relation].z + (0,)
            # Add all traces to the figure
            for trace in traces.values():
                fig.add_trace(trace)

        # Update layout
        fig.update_layout(
            scene=dict(
                xaxis_title="Start Time",
                yaxis_title="End Time",
                zaxis_title="Duration",
                xaxis=dict(range=[self.max_time, 0], autorange="reversed"),
                yaxis=dict(range=[self.max_time, 0], autorange="reversed"),
                zaxis=dict(range=[0, self.max_time * 2]),
                aspectmode="cube",
                aspectratio=dict(x=1, y=1, z=1),
            ),
            title=f"Allen's 13 Temporal Relations Visualization for {self.mode}",
            legend_title="Temporal Relations",
            legend=dict(yanchor="top", y=0.99, xanchor="left", x=0.01),
        )

        # Show plot
        fig.show()
        # to html
        fig.write_html(self.output_dir / f"{self.mode}_allen_temporal_relations.html")

determine_relation(interval1, interval2)

Determine the relationship between two temporal intervals

Source code in TimelineKGQA/simulation/allen_temporal_simulator.py
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
def determine_relation(self, interval1, interval2):
    """
    Determine the relationship between two temporal intervals

    """
    start1, end1 = interval1
    start2, end2 = interval2

    if end1 < start2:
        return "before"  # interval1 is before interval2
    elif start1 > end2:
        return "after"  # interval1 is after interval2
    elif end1 == start2:  # interval1 meets interval2
        return "meets"
    elif start1 == end2:  # interval1 is met by interval2
        return "met_by"
    elif start1 < start2 < end1 < end2:  # interval1 overlaps interval2
        return "overlaps"
    elif start2 < start1 < end2 < end1:  # interval1 is overlapped by interval2
        return "overlapped_by"
    elif start1 == start2 and end1 < end2:  # interval1 starts interval2
        return "starts"
    elif start1 == start2 and end1 > end2:  # interval1 is started by interval2
        return "started_by"
    elif start2 < start1 < end1 < end2:  # interval1 is during interval2
        return "during"
    elif start1 < start2 < end2 < end1:  # interval1 contains interval2
        return "contains"
    elif start1 < start2 < end2 == end1:  # interval1 finishes interval2
        return "finishes"
    elif start2 < start1 < end1 == end2:  # interval1 is finished by interval2
        return "finished_by"
    elif start1 == start2 and end1 == end2:  # interval1 equals interval2
        return "equals"

determine_relation_timepointrange(point_1, time_range_2)

Point 1 will be a time point, and point 2 will be a time range So there will be 5 relationships: before, starts, during, finishes, after

Source code in TimelineKGQA/simulation/allen_temporal_simulator.py
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
def determine_relation_timepointrange(self, point_1, time_range_2):
    """
    Point 1 will be a time point, and point 2 will be a time range
    So there will be 5 relationships: before, starts, during, finishes, after

    """
    start1, end1 = point_1  # point1 is a time point, so start1 = end1
    start2, end2 = time_range_2

    if start1 < start2:
        return "before"  # point1 is before range2
    elif start1 == start2:
        return "starts"  # point1 starts range2
    elif start1 > start2 and start1 < end2:
        return "during"
    elif start1 == end2:
        return "finishes"
    elif start1 > start2:
        return "after"

determine_relation_timerangepoint(point1, point2)

Point 1 will be a time range, and point 2 will be a time point So there will be 5 relationships: before, meets, contain, finished_by, after

Source code in TimelineKGQA/simulation/allen_temporal_simulator.py
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
def determine_relation_timerangepoint(self, point1, point2):
    """
    Point 1 will be a time range, and point 2 will be a time point
    So there will be 5 relationships: before, meets, contain, finished_by, after
    """

    start1, end1 = point1
    start2, end2 = point2  # point2 is a time point, so end2 = start2

    if end1 < start2:
        return "before"  # range1 is before point2
    elif end1 == start2:
        return "finished_by"  # range 1 meets point2
    elif start1 < start2 and end1 > start2:
        return "contains"  # range 1 contains point2
    elif start1 == start2:
        return "met_by"  # range 1 finished_by point2
    elif start1 > start2:
        return "after"  # range 1 is after point2

generate_surface()

This is the 3D surface that represents all information temporal information

Source code in TimelineKGQA/simulation/allen_temporal_simulator.py
34
35
36
37
38
39
40
41
42
43
44
def generate_surface(self):
    """
    This is the 3D surface that represents all information temporal information
    """
    x = np.linspace(0, self.max_time, 100)
    y = np.linspace(0, self.max_time, 100)
    X, Y = np.meshgrid(x, y)
    Z = np.maximum(Y - X, 0)  # Z starts from 0 at the origin and increases
    # remove all points where X > Y
    Z[X > Y] = np.nan
    return X, Y, Z

visualize(center_point=None)

First generate the 3D surface for the visualization

Source code in TimelineKGQA/simulation/allen_temporal_simulator.py
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
def visualize(self, center_point=None):
    """
    First generate the 3D surface for the visualization
    """
    X, Y, Z = self.generate_surface()

    fig = go.Figure()

    if self.mode == "surface":
        # show the surface track
        fig.add_trace(
            go.Surface(
                x=X,
                y=Y,
                z=Z,
                # give it the grey color
                colorscale=[[0, "rgb(220,220,220)"], [1, "rgb(220,220,220)"]],
                showscale=False,
                opacity=0.5,
                showlegend=False,
            )
        )

    traces = {
        relation: go.Scatter3d(
            x=[],
            y=[],
            z=[],
            mode="markers",
            marker=dict(size=5, color=color, symbol=shape),
            name=relation,
        )
        for relation, (color, shape) in self.color_shape_map.items()
    }

    """
    Here is for relationship between temporal intervals
    """
    if self.mode == "timeranges":
        # define a center point
        if not center_point:
            center_point = (25, 75)
        start, end = center_point
        fig.add_trace(
            go.Scatter3d(
                x=[start],
                y=[end],
                z=[end - start],
                mode="markers",
                marker=dict(size=20, color="black", symbol="cross"),
                showlegend=False,
            )
        )

        nearby_points = self.generate_nearby_time_ranges(center_point)
        for nearby_point in nearby_points:
            n_start, n_end = nearby_point
            relation = self.determine_relation(center_point, nearby_point)
            traces[relation].x = traces[relation].x + (n_start,)
            traces[relation].y = traces[relation].y + (n_end,)
            traces[relation].z = traces[relation].z + (n_end - n_start,)

        # Add all traces to the figure
        for trace in traces.values():
            fig.add_trace(trace)

    """
    Add a time point to time point relationship

    Which means the z is 0, x = y, and only three relationships: before, equals, after
    """

    if self.mode == "timepoints":

        # define a center point for timepoint
        if not center_point:
            center_point = (50, 50)
        else:
            assert (
                len(center_point) == 2
            ), "Center point must be a tuple of 2 values"
            assert (
                center_point[0] == center_point[1]
            ), "Center point must be a time point"
        start, end = center_point
        fig.add_trace(
            go.Scatter3d(
                x=[start],
                y=[end],
                z=[0],
                mode="markers",
                marker=dict(size=20, color="black", symbol="cross"),
                showlegend=False,
            )
        )

        nearby_points = self.generate_nearby_timepoints(center_point)

        for nearby_point in nearby_points:
            n_start, n_end = nearby_point
            relation = self.determine_relation_timepoint(center_point, nearby_point)
            traces[relation].x = traces[relation].x + (n_start,)
            traces[relation].y = traces[relation].y + (n_end,)
            traces[relation].z = traces[relation].z + (0,)
        # Add all traces to the figure
        for trace in traces.values():
            fig.add_trace(trace)

    if self.mode == "timepointrange":
        if not center_point:
            center_point = (50, 50)
        else:
            assert (
                len(center_point) == 2
            ), "Center point must be a tuple of 2 values"
            assert (
                center_point[0] != center_point[1]
            ), "Center point must be a time range"
        start, end = center_point
        fig.add_trace(
            go.Scatter3d(
                x=[start],
                y=[end],
                z=[0],
                mode="markers",
                marker=dict(size=20, color="black", symbol="cross"),
                showlegend=False,
            )
        )

        nearby_points = self.generate_nearby_time_ranges(center_point)
        for nearby_point in nearby_points:
            n_start, n_end = nearby_point
            relation = self.determine_relation_timepointrange(
                center_point, nearby_point
            )
            if relation is None:
                continue
            traces[relation].x = traces[relation].x + (n_start,)
            traces[relation].y = traces[relation].y + (n_end,)
            traces[relation].z = traces[relation].z + (n_end - n_start,)
        # Add all traces to the figure
        for trace in traces.values():
            fig.add_trace(trace)

    if self.mode == "timerangepoint":
        if not center_point:
            center_point = (25, 75)
        else:
            assert (
                len(center_point) == 2
            ), "Center point must be a tuple of 2 values"
            assert (
                center_point[0] != center_point[1]
            ), "Center point must be a time range"
        start, end = center_point
        fig.add_trace(
            go.Scatter3d(
                x=[start],
                y=[end],
                z=[end - start],
                mode="markers",
                marker=dict(size=20, color="black", symbol="cross"),
                showlegend=False,
            )
        )

        nearby_points = self.generate_nearby_timepoints_for_timerange(center_point)
        for nearby_point in nearby_points:
            n_start, n_end = nearby_point
            relation = self.determine_relation_timerangepoint(
                center_point, nearby_point
            )
            if relation is None:
                continue
            traces[relation].x = traces[relation].x + (n_start,)
            traces[relation].y = traces[relation].y + (n_end,)
            traces[relation].z = traces[relation].z + (0,)
        # Add all traces to the figure
        for trace in traces.values():
            fig.add_trace(trace)

    # Update layout
    fig.update_layout(
        scene=dict(
            xaxis_title="Start Time",
            yaxis_title="End Time",
            zaxis_title="Duration",
            xaxis=dict(range=[self.max_time, 0], autorange="reversed"),
            yaxis=dict(range=[self.max_time, 0], autorange="reversed"),
            zaxis=dict(range=[0, self.max_time * 2]),
            aspectmode="cube",
            aspectratio=dict(x=1, y=1, z=1),
        ),
        title=f"Allen's 13 Temporal Relations Visualization for {self.mode}",
        legend_title="Temporal Relations",
        legend=dict(yanchor="top", y=0.99, xanchor="left", x=0.01),
    )

    # Show plot
    fig.show()
    # to html
    fig.write_html(self.output_dir / f"{self.mode}_allen_temporal_relations.html")